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ENTIRE SOLUTIONS OF THE FUNCTIONAL EQUATION FROM
PERCUS-YEVICK AND GEL'FAND-LEVITAN INTEGRAL EQUATIONS

1. INTRODUCTION

Among the many mathematical theories which have developed fully in recent decades
is the complex analysis of the functional equation. As F. Dyson pointed out, the progress
of both mathematics and physics has in the past been retarded by our unwillingness to
listen -to one another [1]. Therefore it is rather fortunate that the early development of
functional equations met the physical needs arising from the different fields of physics
and engineering science. Since physicists and engineers have become involved in quantum
mechanics and many-body problems, the real picture has turned out to be complicated
and puzzling in many cases. Whereas the system they deal with gets sophisticated and
an exact solution becomes difficult to obtain, the necessity is to find physical insights
into the problem and some sort of rigorous mathematical solutions, even under a simpli-
fication or some approximation of the problem. The functional equation method pre-
sents the general solutions, some of which can serve the physical need in a few problems.

We will consider here two integral equations, the Percus-Yevick [2) and Gel'fand-
Levitan [3] integral equations, which give rise to functional equations. The former plays
an i'aiU It, le IIi CU IIIULrsIU sIII Oatintica lledIa IlZ. inL unuerstaUuing a cea LanI ItlUid prop-
erty, whereas the latter has been used in various fields of science, for example, in the one-
dimensional quantum-mechanical potential problem, the plane stratified plasma, the trans-
mission problem of the electromagnetic wave, etc.

Our efforts in this report will be concentrated in rigorous mathematical solutions to
the general class of functional equation of the type*

i2 (Z) + gp2 (z) h, (1)

which is extracted from these two fundamental integral equations used in physics and en-
gineering science. The derivation of Eq. (1) depends on physical parameters, and no gen-
eral rule has yet been found.

First we will sketch the derivation of Eq. (1) from the Percus-Yevick integral equa-
tion of hard-sphere mixture [51

n
Cs farl A v '1' r_ Ax -_ .1 I_ I:_ ___a___ '__: x Ujk I -/ £i Z1 J ti 1 QIy 2JIVrjk - Y) UY uXll vie ulillSltJfl) i 

2=l

*Special solutions of this type were obtained before by Penrose and Lebowitz [4].

Manuscript submitted May 22, 1975.
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where

1 Ir) = C ,p -11/2c1;(r), r < K- .

G ij = (Pip1 )112gj 1(r), r > R.

n denotes the number of species, and pi is the number density of each species; C£r) and
gijr) are the direct and pair correlation functions respectively. Furthermore, we consider
a special case of the Widom-Rowlinson model in two component versions, that is,

R 1j = a andRi = O inEq.(3$. (4)

Then by defining

- . R. J,F;;j(z) .1/I e T
sF Q r) dr ,

0 1(z) -E eE{ rigj(r) dr,
~ij

and

mJ(Z) - {9-6z)~- [11j(z) E (1 -5S i) f. i)
0

f ~ ~~ n
ezrdr j iju(y)aijr--y)dY,

r-Rij

wA Ct. th iea TannlrAt trsa'nvfAnTr nf TPh (91-

F(Z) + 0(z) - --%{F(Z) +F(-Z)} - UZ) + 5

where the tilde denotes the matrix form related with each component and

r
A1 (p p9)l 1 - Z C JCVj(r) dr]

Aij~ -

is a constant.

flnr facd hen-n 4rs n A X \ -sA $7ts' -,nA-r +4-o nnAd.,,X.LI ua -n. AJ.X I1 10 V'..Y ~ L411¶A W ~ LkO), ~A a ;-I ti \0 WX~A31 blxot-- X~IVAkt~~1t

f lgjjsr) - ldr < 

The diagonal elements of Eq. 6 are obtained easily by making use of the Liouville
theorem.

2
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(5e)

(6)
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After some heavy algebraic manipulation for off-diagonal elements of Eq. (6), we
obtain the function equation

42(z) + g(z)p 2 (z) = h(z), (9)

where

1~~~~~~~~~~~~~~~~1a'pz) - {E12(z) + F1 2(-z)}, (iOn)

_Vf-% A - .. /.A r ,..r i .\ i.-t A LI' /..

(xz) A 112 - ZU12kV) 4 ' 12 IzJ) 2 ( 11F1`2 ()

1+ - (z - A11)F12 (z), (lOb)
2

g(z) 4'U2 22 , (10c)

and

h(z) - = P1A11 - All = Lt(a) = constant. (l0d)

Here /(z) and p(z) are even and entire functions of z such that log yo(z) and log I4(z) I
have the asymptotic behavior a I Re z1 for large z.

In three dimensions a similar analysis shows that

g(z) 4h(z) - zS (I1a)

and

h(z) p2 - ar2&(U)z2, (lb)
with sp(z) and 4'(z) similar to Eqs. (!Oa) and (lob).

When we deal with different models, we will find different h(z). For example, in
the nonadditive mixture of hard spheres [53, we have (in three dimensions)

4

8(z) -~z)A~ - Ehz z2i (1 2a)
i=0

and

g(z) 4a(z) - z6 (12b)

andAu ate same LUnlLIii as inq. 510) iAn tile case ofu oneudimensho.

0la
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Next we derive Eq. (1) from the Gelfan'd-Levitan integral equation t6):

B(x+y) + F(x,y) + f F(xu)Bv+ y)d = 0 (13)
[M--x, -y ]

where

K(X, Y) for x > y
F(x, y) (14)

Wxr- vy for x v

and K(x, y) and E(x, y) are the precursors of inverse scattering and of the propagating
wave through the medium when y = et (c = velocity of light; t = time). Since B(X) is the
Fourier transform of the reflection coefficient b(k), we obtain the following Laplace
transform

A(z)eZX + A(z)F(-z) + F(z) + G(z) = 0 (1N

hr Aofininn

A(z) b{-k) , (I6a)

r X
E(Z) _ F(x, y)e-zY dy, (16h)

-x

and
no

G(z) F(x, y)e-zY dy . (l6t
x

The task in En. (1 5) is to find Ftz) and Ofl2 when AZWl is known. Ror eXamnis. we
know A(z) to be

A(z) = - 0 k 2

in the case of the step potential. In this case, we recover the functional equation of the
same type with Eq. (10), namely,

4t2(z) - (22 +kU)i2(z) = 1 (i$

where

- ~(z) + F4-z) + ezx + ezx

4 '
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and

vP(z) 2 F(z) - F(-z) + eZX - eZx } (19b)
2z

Given A(z), we find in general a functional equation of type (1).

2. STATEMENT OF THE RESULTS

We investigate in the following sections solutions to the functional equation

2 + gfo2 = h, (20)

where g and h are nonzero polynomials and 4 and so are to be entire functions. We con-
tent ourselves in this report with outlining proofs to Theorems 1 through 4 that follow to
keep the many details from obscuring the ideas. Full proofs will appear later in a paper.

Theorem 1 is an existence theorem. Theorem 2 shows the existence of a convenient
canonical form for those equations of type (20) actually having entire solutions. Theorems
3 and 4 describe the general solution. In the last section, after our condensed proofs, we
consider applications.

Theorem 1. There always exist entire solutions 4 and y9 of Eq. (20), unless for some
complex number a and positive integer ar, z - a divides h to the exact power 2cr - 1 while
(z - a)2 0 divides g.

The following definition is needed for the statement of Theorem 2. Definition. A
functional equation

4,2 + glp2
1h, (21)

where g1 and hit are nonzero polynomials with g1 dividing g and h1 dividing h, will be
said to be constructively equivalent to Eq. 20 if and only if one can construct an algo-
rithm for producing two polynomials p(z) and t(z) such that whenever 4q and Ad are
entire solutions of Eq. (21), then 4, = p(z)0, and p = t(z) oa are entire solutions of Eq.
(20) and conversely, every pair of entire solutions of Eq. (20) is of the form p(z)41, and
t{z~p, for entire solutions 1 and <o of Eq. (21).

For the canonical representation we have:

Theorem 2. Each equation of type (20) which actually has at least one pair of entire
solutions is constructively equivalent to some equation of the form

42 + qpp 2 = qq1 , (22)

where p, q, and q1 are relatively prime nonzero polynomials and q has no multiple zeros,

5
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We next proceed to describe the structure of the general solution of Eq. (22),

Theorem 3. Let us choose branches of xf- and V A pair of entire functions 4'
and ip is a solution of Eq. (22) if and only if it is of the form

4, = V/qi7 sin (V/fiy(z))

w = vl'iCos (V(z))

where y(z) may be any multiple ualued function which is analytic and single valued on
- -l Js- SB N1 ^ ;fNne w 4- Z, JI A fi s_ _" IL _ A4 -- -^A- Z. 4 Aw@L ^ .

L"t L4lJJPPJ4 ip bfux s wbriutF tl'4It"ft 4 putIJO15/lLt ueIUa Vjjqll i t4 Z. - UIFeV5 -o W tVt UAW.

a at each zero zj of q, y(z) - njr(N/p3-1 is analytic for some integer n,; (1) at each
zero Zk of p, y - Uk + (1/2)] 2rG(Jhp)- is analytic at z Zk for some integer Rk; e) at
eeach zero Zr of q1 Of multiplicity Mr, y(Z) + (1/2)t4 log (z - z,) (N/ijp)-' is analytic for
some integer t,,-rn, < t, < mr_ such that (m ± tr)± 2 is an integer, (d,) given a solution
pair 4, and 'a and any associated -y, say yj, then Y2 is another associated y if and only
if yjP (71 - y2) = 2nz for some integer n1.

(Note if y corresponds to the solution 4,, 'p, then y + ?r(Vw - corresponds to
the pair -4,L, -'a and -y corresponds to the pair -4p , f )

Theorem 4. Let s(z) equal the product of the distinct zeros of q1 (t). For each p, q, q1
and sets of integers n Ik I and tr as in Theorem 3, there exists a function y1 (z) satisfy-
inn. fhn _.,-PA;.,.,0 Tnf reP Q WIornm2 nnnnrn ; . Tur#4r faX mn.r ho ,rittn- r-n +Jhe

form

71(z) = ( ) 1 (t)q(t)(s(t)-1 f(t) dt

for some polynomial f(t) and some complex number a which is not a zero of pqq1 .

It is clear that any -y(z) as in Theorem 3, corresponding to a particular set of nj, 2k'
and tr, and the y1 (z) in Theorem 4, corresponding to the same set ot nj, X and t, difter
by an entire function.

*. METHO)D ANT) 'P'ROCnFDTfRR

We first prove the nonexistence of solutions under the conditions asserted in Theo-
rem 1. Clearly (z - a)2 a 1I divides 42, so (z - a) divides 4, and (z - a)2Q divides both 42
and g. But then (z - a)2a divides I, contrary to the hypothesis, so there are no solutions.
The remainder of Theorem I is a consequence of Theorems 2, 3, and 4.

We shall sketch a proof of Theorem 2 after the following example. Consider

-29 . 2 9
, 4 I X_ ' A = o, n -o, . nx8 - , I s

W Z-- -= - kZ - z-JYz - 5rr Z-Z - ±jJz - zjtZ - .kza

We may write this as

6
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42 + [z2(z -1)(z - 2)J [(z - 3)2 1 J 2 = [Z2 (Z - 1)2 (z - 2)] [z - 4],

where the polynomials in square brackets are each relatively prime except for the first and
third, which indeed have all their distinct linear factors in common. If the first and third
factors above had no multiple zeros, we would have the desired form already. Instead we
notice that z(z - 1) must divide 4, and, using this, that z - 1 divides sp. Then setting 4i
- z(z - 1),1Q and tp = (z - 1 )oij, we have

2 + [(z-1)(z-2)][(z-3)2Y1 = [z-2]-4 , (24)

which is in the desired form. As we see from this example, the only difficulty in the
preceding procedure is in dealing with multiple zeros which occur in either the first or
third square brackets. It is possible to prove that 4 or (p is always divisible by factors
which allow us to carry out cancellation as in the example. (If we cancel out a factor
completely on one side but not on the other side, then it is no longer a common factor,
and it should be moved to either the second or fourth square brackets respectively.) This
indicates the proof of Theorem 2.

4. CONSTRUCTION OF THE SOLUTIONS

Next we shall sketch the proof of Theorem 3. Suppose that 4 and 'p are two entire
functions which are solutions of an equation of Eq. (22) type. We may factor 42 + qp'p2

into

(4, + iVQ1p)(4 -i@<).

If we set

4 + i\/ 4'p , = iyViij eie' Y (Z) (25)

and

4 - ixJfj sp = -i\/ j e-i eY(z), (26)

this will define a multiple-valued function y(z) which is then certainly analytic on the
complex plane with suitable cuts, from the zeros of pqqlto z = ° removed, as required
by the statement of Theorem 3.

We next analyze the behavior of y(z) at zj, a zero of q. Analytically continuing
Eq. (25), once around z1, we necessarily obtain Eq. (26). Thus we are eventually led to
the conclusion that y(z) - nj1 r(/fip)- is analytic at z = zj for some integer nj.

We can write, using Eqs. (25) and (26),

4(z) = N/4qj sin ({y' 'y(z)) (27a)

and

7
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Xkz) = Cos (VWi5y(Z)). (.

By use of several trigometric identities, we can show that if the functions 4'(z) a
'p&z) are to be analytic at z = z2k S a zero of p, then

ry(Z) _ {f ki + I ) 74 X/'q-1.\ -)Z-

27b)

is analytic at z = zk for some integer Rk . (The cases of zk having even and odd multiplic-
ity are considered separately.) One of the major problems is showing that

-(Qk + )1r)(vi)-1

does not have a pole at z zf after we know that it is single-valued there.

Let zr be a zero of q1 . In Eq. (25) let 4, + i, qpp vanish to the order (mr + tr)/2
at z = zr. Then4 - i V4 p vanishes to the order (irn - t4)12. Also, from Eq. (25*,

'/4 exp [V4.Thy(z) - 2 tr log {z - zr)]

is analytic and nonvanishing at Z = zr; hence

J Zy(z) - 2 tr log (Z - Z7)

is analytic at Z = zr. Obviously tr is an integer and so is (mr ± t 7)/2.

One must then go through carefully to show that the necessary conditions are
indeed sufficient.

We next sketch the proof of Theorem 4. We shall indicate how we can show the
existence of a polynomial fit) such that for some a in C, which is not a zero of pqql,
and for each j, k, and r as in Theorem 3,

JJ <'pqt)qt) (stt))-ftt) dt = njgr,

Zk - -~~tat stl-1 flt) dt = ( R. + 1 ) I f Mtaf 11fisf t) I\ff ~ 21
J, V - ' 2/ ' " ' 

(28)

(29)

and

\Ihpq (sj-l f has a residue of ti2 at Z = Zr . tau)

It is possible to verify that Eqs. (28) through (30) together imply the statement of
Theorem 4. Suppose that we have indexed the set of zj and z, by ze. Then we can

g

I

I
I

i

I
I
I
I

I
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show that it suffices to find a collection of polynomials f, such that

r Vp(t)q(t)f1 (t) dt = 6U 1 (28)
I1 U

where Sul is the Kronecker delta. Indeed, we can set

f = E cufus(z) + E 2itr((pz,)q(~z9)s(z)(z -z,)
u r

for appropriately chosen constants Cu. The existence proof for the fu's is fairly compli-
cated. We assume that no such polynomials exist; this is shown to be equivalent to the
matrix

f p(t)q(t)tk dt)

with an infinite number of rows, corresponding to k = 0, 1, ... , and a finite number of
columns, corresponding to the different zU 's, having rank less than the number of its col-
umns. Changing variables so that the paths of integration are all from 0 to 1, we have
that some linear combination of square roots of differing polynomials (the p-tlq(t) after
the differing changes of variables), with not identically zero coefficients, has every moment
on [0, 1] equal to zero. We can prove that this means that the linear combination of
square roots must be identically zero. If x,/T is not a polynomial and the point a was
chosen "appropriately" previously, we can show that the differing square roots are line-
arly independent functions. (We analyze the locations of the singularities of the square
roots.) This gives the desired result if \/i-4 is not a polynomial. The case where Vrp-4
is a polynomial is an easier but separate one. This completes our outline of the proof
of theorem 4.

5. APPLICATION TO SPECIFIC CASES

We next apply the results stated in the second section to the cases of greatest phys-
ical interest.

To aid us, we shall need the following results:
P-01ry/- Therem - thog A IV. 0-Z = /1 In%3.I~ -

Wt. ptu Iw t&WeL rells 1 LtrIUgh tj). oSt U =l/f/) aeg jpq). Lef us ctoose airbirarily
a polynomial F in z. (a) If 6 > 1 is an integer, there exists some ad'Y, as in Theorem 3,
such that, at z = -o, V5oy is asymptotic to F + 0(fz1). (b) If 8 > 1/2 is not an integer,
there exists some 1/ qy, as in Theorem 3, such that, at z = o, Vfp}y is asymptotic to .,/7 F +
O(z 5 1'). (c) If 6 equals 0 or 1, then there exists some %/iTh-. as in Theorem 3, quch
that, at z = °, N/jiy is asymptotic to F + 0(log z). If 6 = 1/2, then there exists some
VP-qY, as in Theorem 3, such that, at z = °°, \/pqy is asymptotic to N/zF + 0(1). (d) If

:S
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6 > 0 and both a and 'iY 2 are asymptotic to either F or \5F for some polyno-
Mia ri, up to the error term given above for the appropriate Value oF 8, and if further Y1
and 72 both give rise to the same constants nj, Pk, and tr, then y1 y2 . (e) In parts
(a) through (c), given any allowable set of values of the constants ni, k, and tT see The-
orem 3), we may require also that the y to be constructed there corresponds to these
values of ni4, 2 , and t.

Proof. We use the formula

\e/p(Z)(Z)y(Z) = f ss/vDt)q~t)(tS~t))1f~t) at + __ 

where g is an entire function. Now

has an expansion about z in descending integral powers of t if 6 is an integer or
descending odd integral powers of t 112 if 8 is not an integer. Thus the integral is of
the same form as the integrand, except that if 8 is an integer, there may now be a log z
term, and if 6 is not an integer, there may now be a constant term. If 6 is an integer,
set the terms where the power of z is nonnegative equal to G. If 6 is not an integer, set
the terms where the power of z is positive equal to G. We can find a series h, in descend-
ing integral powers of z, such that

h = (ft'(F - G)

if 6 is an integer or

h = (V &-1,(\zF- G)

if 6 is not an integer, Let the polynomial g be defined to be such that h - g vanhes at
z = 'o. Then

g\p = F - G + o0 -i)
if B is an integer, and

pg = zF - G + 0z 1 )

if 8 is not an integer. With this choice of g we obtain the desired asymptotic form for
u, up to an error which depends on the nature of 8. If B is an integer, the error is

the larger of O(z6 j1) and 0(log z). If B is not an integer, the error is the larger of
O(Z- 1 ) and 0(1). This proves parts (a) through (c) of the Corollary. We next prove
part (d).

?l - A.2 = J'g,

10
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where g is entire. Also \/j34g is asymptotic to O(z 5 51), O(log z), or O(z6-112)_ In the
first and third cases,

lim Ig(z) 0I
Z-*00

so

g O .

Also, if 6 = 1, the same conclusion holds. This proves the Corollary. Lemma. If, for
any two solutions 4 and 'p of Eq. (20), H/ay is asymptotic to at/i + 0(1), where a t 0
is real, then on any angular sector about z = 0 not including the negative real axis, we see
that I 4 and ifp I are asymptotic to

exp (caIRexfiI + 0( Ilogz 1)), at z -

Proof. Trivial.

As an example, we now consider a more general Penrose-Liebowitz equation:

4,2 + (aZ2 + b)'p2 = r(Z2 ) , (31)

where a and b are complex numbers, a # 0, r(z2 ) t 0 is a polynomial in Z2 with complex
coefficients, and (az + b) does not divide r(z). We are required to find even entire solu-
tions of Eq. (31), Q and 'p such that, for some real a * 0, log 4 and log p are each
asymptotic at z - to

alRezl+ O(IlogzI)

on any angular sector about z = 0 not containing either the positive or negative imaginary
axis.

Set w = z2. By Theorem 1 we always have a solution. By the Corollary, with
8 = 1/2, and the Lemma, we have that for each integral choice of n1 and the allowable
choices of t,, there are entire solutions 41 (w) and 'op(w) with log 1ikw)Il and log I'pj(w)l
each asymptotic to

aIReVGw1+ 0(Ilogw1)

on any angular sector about z 0 which does not contain the negative real axis. Then
4,1(z2 ) and 'p1 (Z2 ) satisfy the desired conditions.

From Theorem 3(d) and the comment after the statement of Theorem 3, we see
that if our only free parameter is n1 , then the only solutions are +41 and ±'p1- This
will be the case if q1 is a nonzero constant. If q1 is linear in Z2 , then we have two
choices of t1 , that is t1 = ±1. By interchanging y and -'y, if necessary, we may take
ti = 1. Then by the comment after the statement of Theorem 3, the uniqueness of

11
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4, and 9pj up to sign, follows. If q1 (w) has degree larger than one, we cannot have
uniquenessb, vteti Up o bsign.

If we weaken the asymptotic condition slightly, there is also not uniqueness. There
exists an entire function E(z) which is bounded on every ray out from zero but which is
not a constant and is not even of finite order of growth. (The bound is not uniform, of
course.) Adding any such function (we can construct many) to (y V)-, we would
obtain new solutions and 'p with log JiI and log j'pI each asymptotic to

a(ReTwl + 0(Ilog w 1)

on every ray out from zero, except the negative real axis.
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